203 lines
5.8 KiB
PHP
203 lines
5.8 KiB
PHP
<?php
|
|
|
|
class Af_Sort_Bayes extends Plugin {
|
|
|
|
private $host;
|
|
private $filters = array();
|
|
private $dbh;
|
|
private $score_modifier = 50;
|
|
|
|
function about() {
|
|
return array(1.0,
|
|
"Bayesian classifier for tt-rss (WIP)",
|
|
"fox");
|
|
}
|
|
|
|
function init($host) {
|
|
require_once __DIR__ . "/lib/class.naivebayesian.php";
|
|
require_once __DIR__ . "/lib/class.naivebayesianstorage.php";
|
|
|
|
$this->host = $host;
|
|
$this->dbh = Db::get();
|
|
|
|
$this->init_database();
|
|
|
|
$host->add_hook($host::HOOK_ARTICLE_FILTER, $this);
|
|
$host->add_hook($host::HOOK_PREFS_TAB, $this);
|
|
$host->add_hook($host::HOOK_ARTICLE_BUTTON, $this);
|
|
|
|
}
|
|
|
|
function trainArticle() {
|
|
$article_id = (int) $_REQUEST["article_id"];
|
|
$train_up = sql_bool_to_bool($_REQUEST["train_up"]);
|
|
|
|
$category = $train_up ? "GOOD" : "NEUTRAL";
|
|
|
|
$nbs = new NaiveBayesianStorage($_SESSION["uid"]);
|
|
$nb = new NaiveBayesian($nbs);
|
|
|
|
$result = $this->dbh->query("SELECT score, guid, title, content FROM ttrss_entries, ttrss_user_entries WHERE ref_id = id AND id = " .
|
|
$article_id . " AND owner_uid = " . $_SESSION["uid"]);
|
|
|
|
if ($this->dbh->num_rows($result) != 0) {
|
|
$guid = $this->dbh->fetch_result($result, 0, "guid");
|
|
$title = $this->dbh->fetch_result($result, 0, "title");
|
|
$content = mb_strtolower($title . " " . strip_tags($this->dbh->fetch_result($result, 0, "content")));
|
|
$score = $this->dbh->fetch_result($result, 0, "score");
|
|
|
|
$this->dbh->query("BEGIN");
|
|
|
|
if ($nb->untrain($guid, $content)) {
|
|
if ($score >= $this->score_modifier) $score -= $this->score_modifier;
|
|
}
|
|
|
|
$nb->train($guid, $nbs->getCategoryByName($category), $content);
|
|
|
|
if ($category == "GOOD") $score += $this->score_modifier;
|
|
|
|
$this->dbh->query("UPDATE ttrss_user_entries SET score = '$score' WHERE ref_id = $article_id AND owner_uid = " . $_SESSION["uid"]);
|
|
|
|
$nb->updateProbabilities();
|
|
|
|
$this->dbh->query("COMMIT");
|
|
|
|
}
|
|
|
|
print "$article_id :: $category";
|
|
}
|
|
|
|
function get_js() {
|
|
return file_get_contents(__DIR__ . "/init.js");
|
|
}
|
|
|
|
function hook_article_button($line) {
|
|
return "<img src=\"plugins/af_sort_bayes/thumb_up.png\"
|
|
style=\"cursor : pointer\" style=\"cursor : pointer\"
|
|
onclick=\"bayesTrain(".$line["id"].", true)\"
|
|
class='tagsPic' title='".__('+1')."'>" .
|
|
"<img src=\"plugins/af_sort_bayes/thumb_down.png\"
|
|
style=\"cursor : pointer\" style=\"cursor : pointer\"
|
|
onclick=\"bayesTrain(".$line["id"].", false)\"
|
|
class='tagsPic' title='".__('-1')."'>";
|
|
|
|
}
|
|
|
|
function init_database() {
|
|
$prefix = "ttrss_plugin_af_sort_bayes";
|
|
|
|
// TODO there probably should be a way for plugins to determine their schema version to upgrade tables
|
|
|
|
/*$this->dbh->query("DROP TABLE IF EXISTS ${prefix}_wordfreqs", false);
|
|
$this->dbh->query("DROP TABLE IF EXISTS ${prefix}_references", false);
|
|
$this->dbh->query("DROP TABLE IF EXISTS ${prefix}_categories", false);*/
|
|
|
|
$this->dbh->query("BEGIN");
|
|
|
|
// PG only for the time being
|
|
|
|
$this->dbh->query("CREATE TABLE IF NOT EXISTS ${prefix}_categories (
|
|
id SERIAL NOT NULL PRIMARY KEY,
|
|
category varchar(100) NOT NULL DEFAULT '',
|
|
probability DOUBLE PRECISION NOT NULL DEFAULT '0',
|
|
owner_uid INTEGER NOT NULL REFERENCES ttrss_users(id) ON DELETE CASCADE,
|
|
word_count BIGINT NOT NULL DEFAULT '0')");
|
|
|
|
$this->dbh->query("CREATE TABLE IF NOT EXISTS ${prefix}_references (
|
|
id SERIAL NOT NULL PRIMARY KEY,
|
|
document_id VARCHAR(255) NOT NULL,
|
|
category_id INTEGER NOT NULL REFERENCES ${prefix}_categories(id) ON DELETE CASCADE,
|
|
owner_uid INTEGER NOT NULL REFERENCES ttrss_users(id) ON DELETE CASCADE,
|
|
content text NOT NULL)");
|
|
|
|
$this->dbh->query("CREATE TABLE IF NOT EXISTS ${prefix}_wordfreqs (
|
|
word varchar(100) NOT NULL DEFAULT '',
|
|
category_id INTEGER NOT NULL REFERENCES ${prefix}_categories(id) ON DELETE CASCADE,
|
|
owner_uid INTEGER NOT NULL REFERENCES ttrss_users(id) ON DELETE CASCADE,
|
|
count BIGINT NOT NULL DEFAULT '0')");
|
|
|
|
$owner_uid = @$_SESSION["uid"];
|
|
|
|
if ($owner_uid) {
|
|
$result = $this->dbh->query("SELECT id FROM ${prefix}_categories WHERE owner_uid = $owner_uid LIMIT 1");
|
|
|
|
if ($this->dbh->num_rows($result) == 0) {
|
|
$this->dbh->query("INSERT INTO ${prefix}_categories (category, owner_uid) VALUES ('GOOD', $owner_uid)");
|
|
$this->dbh->query("INSERT INTO ${prefix}_categories (category, owner_uid) VALUES ('NEUTRAL', $owner_uid)");
|
|
}
|
|
}
|
|
|
|
$this->dbh->query("COMMIT");
|
|
}
|
|
|
|
function hook_prefs_tab($args) {
|
|
if ($args != "prefPrefs") return;
|
|
|
|
print "<div dojoType=\"dijit.layout.AccordionPane\" title=\"".__('af_sort_bayes')."\">";
|
|
|
|
//
|
|
|
|
print "</div>";
|
|
}
|
|
|
|
function hook_article_filter($article) {
|
|
$owner_uid = $article["owner_uid"];
|
|
|
|
$nbs = new NaiveBayesianStorage($owner_uid);
|
|
$nb = new NaiveBayesian($nbs);
|
|
|
|
$categories = $nbs->getCategories();
|
|
|
|
if (count($categories) > 0) {
|
|
|
|
$count_neutral = 0;
|
|
$count_good = 0;
|
|
$id_good = 0;
|
|
$id_neutral = 0;
|
|
|
|
foreach ($categories as $id => $cat) {
|
|
if ($cat["category"] == "GOOD") {
|
|
$id_good = $id;
|
|
$count_good += $cat["word_count"];
|
|
} else if ($cat["category"] == "NEUTRAL") {
|
|
$id_neutral = $id;
|
|
$count_neutral += $cat["word_count"];
|
|
}
|
|
}
|
|
|
|
$dst_category = $id_neutral;
|
|
|
|
$bayes_content = mb_strtolower($article["title"] . " " . strip_tags($article["content"]));
|
|
|
|
if ($count_neutral >= 3000 && $count_good >= 1000) {
|
|
// enable automatic categorization
|
|
|
|
$result = $nb->categorize($bayes_content);
|
|
|
|
if (count($result) == 2) {
|
|
$prob_good = $result[$id_good];
|
|
$prob_neutral = $result[$id_neutral];
|
|
|
|
if ($prob_good > 0.90 && $prob_good > $prob_neutral) {
|
|
//$dst_category = $id_good; // should we autofile as good or not? idk
|
|
$article["score_modifier"] += $this->score_modifier;
|
|
}
|
|
}
|
|
}
|
|
|
|
$nb->train($article["guid_hashed"], $dst_category, $bayes_content);
|
|
|
|
$nb->updateProbabilities();
|
|
}
|
|
|
|
return $article;
|
|
|
|
}
|
|
|
|
function api_version() {
|
|
return 2;
|
|
}
|
|
|
|
}
|
|
?>
|